nacalai tesque The quality for certainty.

Contact us Email : info.intl@nacalai.co.jp TEL : +81-75-251-1730 FAX : +81-75-251-1763

Product No. 07663

07663E_2411_2

ZYMOLYASE®-20T (from Arthrobacter luteus)

Source: Arthrobacter luteus

Description: ZYMOLYASE[®]-20T, produced by a submerged culture of *Arthrobacter luteus*¹), is a new enzyme preparation which lyses effectively cell walls of viable yeast cells²), ³). This preparation is a lyophilized powder prepared by salting out from culture fluid with ammonium sulfate.

An essential enzyme responsible for lysis of viable yeast cells in this preparation is β -1,3-glucan laminaripentaohydrolase. It hydrolyzes linear glucose polymers with β -1,3-linkages and releases specifically laminaripentaose as the main and minimum product unit^{4,5,10,11}.

The extent of lysis of yeast cells by ZYMOLYASE[®]-20T varies with yeast strain, growth stage of yeast, or cultural condition⁶⁻⁸⁾.

ZYMOLYASE[®]-20T shows 20,000 units/g of the lytic activity, defined after, toward brewer's yeast cells (*Saccharomyces cerevisiae*, resting stage) or toward yeast cells of *Saccharomyces cerevisiae* IFO 0565 cultured statically in malt extract medium (malt extract 2g, peptone 0.5g, water 100ml) at 20°C for 34hr.

Further purified preparation⁹⁾ is also available as ZYMOLYASE[®]-100T whose specific activity is 100,000units/g. Further informations related to ZYMOLYASE[®] are obtained in the references sited below¹²⁻¹⁶).

Product information:

Activity		20,000units/g	
Contaminants	β-1, 3-glucai	nase	1.5 × 10 ⁶ units/g
	Protease		1.0 × 104 units/g
	Mannanase		1.0 × 10 ⁶ units/g
	(See referen	ce No.3 as to the definition of each enzyme units	
	Each activity varies more or less amount lots.)		
	Amylase, Xylanase, Phosphatase		Minute amounts
Essential Enzyme	β-1, 3-glucai	n laminaripentaohydrolase	
Appearance		Lyophilized powder	
Optimum pH and temperature		pH7.5, 35°C (for lysis of viable yeast cells)	
		pH6.5, 45°C (for hydrolysis of yeast glucan)	
Stable pH		5-10	
Heat stability		The lytic activity is lost on incubation at 60°C fo	r 5 minutes.
Specificity (Lytic spectrum) ⁵⁾		Ashbya, Candida, Debaryomyces, Eremotheci	um, Endomyces,
		Hansenula, Hanseniaspora, Kloekera, Kluyveromyces,	
		Lipomyces, Metschnikowia, Pichia, Pullularia, Torulopsis,	
		Saccharomyces, Saccharomycopsis, Saccharomycodes,	
		Schwanniomyces, etc.	
Activator		SH compound such as cysteine, 2-mercaptoet	hanol or dithiothreitol

<u>Unit Definition</u>: One unit of lytic activity is defined as that amount which indicates 30% of decrease in absorbance at 800nm (A₈₀₀) of the reaction mixture under the following condition.

Contact us Email : info.intl@nacalai.co.jp TEL : +81-75-251-1730 FAX : +81-75-251-1763

07663E_2411_2

Assay for Enzyme Activity:

Method		
[Reaction mixture]		
Substrate and Buffer solution:	Brewer's yeast cell suspension (2mg dry weight/ml)	3mL
	M/15 Phosphate buffer, pH7.5	5mL
Enzyme solution:	0.05-0.1 mg/mL solution	1 mL
Distilled water		1mL
Total volume		10mL
[Procedure]		
After incubation for 2 hours at 2	25°C with gentle shaking, A ₈₀₀ of the mixture is determined	d. As a
reference,1ml of distilled water	s used instead of enzyme solution.	

Calculation

Percentage decrease in $A_{800} = (A_{800} \text{ of reference} - A_{800} \text{ of reaction mixture}) \times 100/ initial A_{800} \text{ of reference}$ When 60% of A_{800} decrease, equivalent to 2 units, is observed in the reaction system, the brewer's yeast cells are completely lysed, namely, 1 unit of ZYMOLYASE[®]-20T lyses 3mg dry weight of brewer's yeast.

Precautions on use: Use a sterilized filter except nitrocellulose when a sterilized enzyme solution is needed.

Storage: Stable for at least 1 year at 2°C. About 70% of the lytic activity is lost when stored at 30°C for 3 months.

<u>References</u>:

- 1) Kaneko, T., Kitamura, K. and Yamamoto, Y.: J.Gen. Appl. Microbiol., 15, 317(1969)
- 2) Kitamura, K., Kaneko, T. and Yamamoto, Y.: Arch. Biochem. Biophys., 145, 402(1971)
- 3) Kitamura, K., Kaneko, T. and Yamamoto, Y. .: J.Gen. Appl. Microbiol 18, 57(1972)
- 4) Kitamura, K. and Yamamoto, Y.: Arch. Biochem. Biophys., 153, 403(1972)
- 5) Kaneko, T., Kitamura, K. and Yamamoto, Y.: Agric. Biol. Chem., **37**, 2295(1973)
- 6) Kitamura, K., Kaneko, T. and Yamamoto, Y.: J. Gen. Appl. Microbiol., 20, 323(1974)
- 7) Kitamura, K. and Yamamoto, Y.: Agric Biol. Chem., 45, 1761(1981)
- 8) Kitamura K. and Tanabe, K.: Agric. Biol. Chem, 46, 553(1982)
- 9) Kitamura, K.: J.Ferment. Technol., 60, 257(1982)
- 10) Kitamura, K.: Agric. Biol. Chem., 46, 963(1982)
- 11) Kitamura, K.: Agric. Biol. Chem., 46, 2093(1982)
- 12) Calza, R. E. and Schroeder A. L.: J. Gen. Microbiol., 129, 413(1983)
- 13) lizuka, M., Torii, Y. and Yamamoto, T.: Agric. Biol. Chem., 47(12), 2767(1983)
- 14) Shibata, N., Kobayashi, H., Tojo, M. and Suzuki, S.: Arch. Biochem. Biophys., 251(2), 697(1986)
- 15) lijima, Y. and Yanagi, S. O.: Argic. Biol. Chem., 50(7), 1855(1986)
- 16) Herrero, E., Sanz, P. and Sentandreu, R.: J. Gen. Microbiol., 133(10), 2895(1987)

<u>Note</u>: For *in vitro* research use only, not for diagnostic or therapeutic use. This product is not a medical device.

Mitsubishi Corporation Life Sciences Limited

Manufactured by